
Automated Empirical Tuning of a

Multiresolution Analysis Kernel∗

Haihang You† Keith Seymour† Jack Dongarra‡ Shirley Moore†

November 10, 2006

1 Introduction

As CPU speeds double every couple of years following Moore’s law[1], memory speed lags
behind. Because of this increasing gap between the speeds of processors and memory, in or-
der to achieve high performance on modern systems new techniques such as longer pipeline,
deeper memory hierarchy, and hyper threading have been introduced into the hardware
design. Meanwhile, compiler optimization techniques have been developed to transform
programs written in high-level languages to run efficiently on modern architectures[2, 3].
These program transformations include loop blocking[4, 5], loop unrolling[2], loop permuta-
tion, fusion and distribution[6, 7]. To select optimal parameters such as block size, unrolling
factor, and loop order, most compilers compute these values with analytical models referred
to as model-driven optimization. In contrast, empirical optimization techniques generate
a large number of code variants with different parameter values for an algorithm, for ex-
ample matrix multiplication. All these candidates run on the target machine, and the
one that gives the best performance is picked. With this empirical optimization approach
ATLAS[8, 9], PHiPAC[10], OSKI[11], and FFTW[12] successfully generate highly optimized
libraries for dense and sparse linear algebra kernels and FFT respectively. It has been shown
that empirical optimization is more effective than model-driven optimization[13].

2 Generic Code Optimization (GCO) Framework

Current empirical optimization techniques such as ATLAS and FFTW can achieve good
performance because the algorithms to be optimized are known ahead of time. We are
addressing this limitation by extending the techniques used in ATLAS to the optimization
of arbitrary code. Since the algorithm to be optimized is not known in advance, compiler
technology is required to analyze the source code and generate the candidate implementa-
tions. The ROSE project[14, 15] from Lawrence Livermore National Laboratory provides,
among other things, a source-to-source code transformation tool that can produce blocked

∗This work was supported by the Department of Energy SciDAC program under grant no. DE-FC02-
06ER25761.

†Department of Computer Science, University of Tennessee, Knoxville
‡Department of Computer Science, University of Tennessee, Knoxville and Oak Ridge National Labora-

tory

1



and unrolled versions of the input code. Combined with our search heuristic we can use the
ROSE LoopProcessor to perform empirical code optimization [16, 17]. For example, we can
direct the LoopProcessor to perform automatic loop blocking at varying sizes, which we can
then evaluate to find the best block size for that loop. To perform the evaluations, we have
developed a test infrastructure that automatically generates a timing driver for the routine
based on a simple description of the arguments. Since the search space may be too large to
feasibly perform an exhaustive search, we have implemented search strategies based on es-
tablished optimization techniques, such as the simplex method and genetic algorithms. We
have also implemented a random search to determine whether there is any benefit to using
these techniques or if it will suffice to just choose a certain number of points at random.

(gcc, icc, etc.)

Search Engine
Hardware Info
Detection

Optimal
Parameters

Compiler

Original
Source Code

ROSE
Loop Processor

Code Variant
Blocked/Unrolled

Timing Driver
Generator

Code Evaluation
Driver

Figure 1: GCO Framework

Figure 1 shows the overall structure of the Generic Code Optimization system. The
code is fed into the loop processor for optimization and separately fed into the timing
driver generator which generates the code that actually runs the optimized code variant to
determine its execution time. The results of the timing are fed back into the search engine.
Based on these results, the search engine may adjust the parameters used to generate the
next code variant. In the future, the initial set of parameters could be estimated based on
the characteristics of the hardware (e.g. cache sizes).

3 Tuning the Multiresolution Analysis Kernel with GCO

As part of our participation in the Performance Engineering Research Institute (PERI)∗, we
were made aware of an opportunity to apply our GCO framework to a performance limiting
kernel for the MADNESS framework for adaptive multiresolution methods in multiwavelet
bases † [18]. The kernel is encapsulated in the function doitgen in the original source code.

∗http://www.peri-scidac.org/
†http://www.csm.ornl.gov/ccsg/html/projects/madness.html

2



Feature Pentium 4 Woodcrest Opteron

Processor Speed 1.7GHz 3.0 GHz 2.0GHz

L1 Instruction 12KB 32KB 64KB

L1 Data 8KB 32KB 64KB

L2 256KB 128KB 1024KB

OS Linux Linux Linux

Compiler gcc 3.4.4 gcc 3.4.6 gcc 3.4.6

Table 1: Processor Specifications

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  5  10  15  20  25  30  35

M
F

LO
P

S

SIZE

MFLOPS -- Pentium 4(1.7 GHz)

Reference doitgen
RH tuned doitgen

GCO doitgen_14_10

Figure 2: Pentium 4

The function doitgen is a good candidate for empirical tuning since it has a loop nest
that can be optimized and the loops contain no external function calls. Since the ROSE
LoopProcessor does not yet support Fortran, we translated the code to C using f2c. Section
4.1 shows the reference code after the conversion. In Section 4.3, the special comments at the
top of the wrapper code are directives used by the GCO system to generate the appropriate
testing driver and Makefile. These argument specification directives are written by hand.
The function doitgen has a relatively small search space because the upper bound of each
dimension of the input array is 31. Therefore, the more sophisticated search techniques
were not necessary and a brute force search was used. We tested all block sizes from 1 to
31 and for unrolling, we limited the maximum unroll amount to the selected block size.
Otherwise, if the unroll amount is greater than the block size, the unrolled section would
not be executed. So far we have done experiments on Intel Pentium 4, Intel Core Duo
(Woodcrest), and AMD Opteron. The specifications of these platforms are shown in Table
1. Section 4.2 shows the GCO-generated code on Opteron. A comparison of the performance
of the reference code, the hand-tuned code, and the GCO generated doitgen code is shown

3



 0

 500

 1000

 1500

 2000

 0  5  10  15  20  25  30  35

M
F

LO
P

S

SIZE

MFLOPS -- Woodcrest (3.00 GHz)

Reference doitgen
RH tuned doitgen

GCO doitgen_14_4

Figure 3: Woodcrest

in Figures 2, 3, and 4. The hand-tuned code (designated “RH tuned doitgen” in the graphs)
was unrolled to varying depths by hand. The GCO-generated code is about 1.5 to 2 times
faster than the hand-tuned version, and 2 to 3 times faster than the reference code. With
the GCO approach, after writing the argument specification directives, the tuning process
is automatic and took less than five minutes in this case.

4 Source Code

4.1 Reference doitgen

int doitgen ref (double *a, int *ia1, int *ia2, doitgen ref

int *ia3, double *x, int *ldx, int *np,
int *nq, int *nr, int *ns)

{
/* System generated locals */
int x dim1, x offset, i 1, i 2, i 3, i 4;

/* Local variables */
static int p, q, r , s;
static double t0[30]; 10

static int qr, pqr;
static double sum;
static int sqr;

/* This is the original version . . . a new port */

4



 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  5  10  15  20  25  30  35

M
F

LO
P

S

SIZE

MFLOPS -- Opteron (2.00 GHz)

Reference doitgen
RH tuned doitgen

GCO doitgen_8_6

Figure 4: Opteron

/* to another processor could start from this. */

/* Parameter adjustments */
−−a;
x dim1 = *ldx; 20

x offset = 1 + x dim1;
x −= x offset;

/* Function Body */
i 1 = *nr;
for (r = 1; r <= i 1; ++r ) {

i 2 = *nq;
for (q = 1; q <= i 2; ++q) {

qr = (q − 1) * *ia2 + 1 + (r − 1) * *ia3;
i 3 = *np; 30

for (p = 1; p <= i 3; ++p) {
sum = 0.;
sqr = qr;
i 4 = *ns;
for (s = 1; s <= i 4; ++s) {

sum += a[sqr] * x[s + p * x dim1];
sqr += *ia1;

}
t0[p − 1] = sum;

} 40

5



pqr = qr;
i 3 = *np;
for (p = 1; p <= i 3; ++p) {

a[pqr] = t0[p − 1];
pqr += *ia1;

}
}

}
return 0;

} /* doitgen ref */ 50

4.2 GCO-generated doitgen

int min(int ,int );

int doitgen ref (double *a,int *ia1,int *ia2,int *ia3, double *x, doitgen ref

int *ldx, int *np, int *nq, int *nr, int *ns)
{

int var 0;
/* System generated locals */

int x dim1;
int x offset;
int i 1; 10

int i 2;
int i 3;
int i 4;

/* Local variables */
int p;
int q;
int r ;
int s;
double t0[30];
int qr; 20

int pqr;
double sum;
int sqr;

/* Parameter adjustments */
−−a;
x dim1 = *ldx;
x offset = 1 + x dim1;
x −= x offset;

/* Function Body */ 30

i 1 = *nr;
for ( var 0 = 1; var 0 <= i 1; var 0 += 8) {

for (r = var 0; r <= min(i 1,( var 0 + 7)); r += 1) {

6



for (q = 1; q <= i 2; q += 1) {
qr = ((q − 1) * *ia2 + 1) + (r − 1) * *ia3;
i 3 = *np;
for (p = 1; p <= i 3; p += 1) {

sum = 0.0;
sqr = qr;
i 4 = *ns; 40

for (s = 1; s <= −5 + i 4; s += 6) {
sum += a[sqr] * x[(s + p * x dim1)];
sqr += *ia1;
sum += a[sqr] * x[((1 + s) + p * x dim1)];
sqr += *ia1;
sum += a[sqr] * x[((2 + s) + p * x dim1)];
sqr += *ia1;
sum += a[sqr] * x[((3 + s) + p * x dim1)];
sqr += *ia1;
sum += a[sqr] * x[((4 + s) + p * x dim1)]; 50

sqr += *ia1;
sum += a[sqr] * x[((5 + s) + p * x dim1)];
sqr += *ia1;

}
for (; s <= i 4; s += 1) {

sum += a[sqr] * x[(s + p * x dim1)];
sqr += *ia1;

}
t0[(p − 1)] = sum;

} 60

pqr = qr;
i 3 = *np;
for (p = 1; p <= −5 + i 3; p += 6) {

a[pqr] = t0[(p − 1)];
pqr += *ia1;
a[pqr] = t0[((1 + p) − 1)];
pqr += *ia1;
a[pqr] = t0[((2 + p) − 1)];
pqr += *ia1;
a[pqr] = t0[((3 + p) − 1)]; 70

pqr += *ia1;
a[pqr] = t0[((4 + p) − 1)];
pqr += *ia1;
a[pqr] = t0[((5 + p) − 1)];
pqr += *ia1;

}
for (; p <= i 3; p += 1) {

a[pqr] = t0[(p − 1)];
pqr += *ia1;

7



} 80

}
i 2 = *nq;

}
}
return 0;

/* doitgen ref */

4.3 Wrapper doitgen

#include "f2c.h"

/*$ATLAS ROUTINE DOITGEN REF */
/*$ATLAS SIZE 1:31:1 */
/*$ATLAS ARG IA1 IN int 1 */
/*$ATLAS ARG IA2 IN int $size */
/*$ATLAS ARG A[IA2][IA2][IA2] INOUT double $rand */
/*$ATLAS ARG X[IA2][IA2] IN double $rand */
/*$ATLAS ARG LDX IN int $size */
/*$ATLAS ARG NP IN int $size */ 10

/*$ATLAS ARG NQ IN int $size */
/*$ATLAS ARG NR IN int $size */
/*$ATLAS ARG NS IN int $size */

extern int doitgen ref (double *a, int *ia1, int *ia2, doitgen ref

int *ia3, double *x, int *ldx, int *np, int *nq,
int *nr, int *ns);

/* Subroutine */ int doitgen ref(int ia1, int ia2,
double *a, double *x, int ldx, int np, int nq, 20

int nr, int ns)
{

int ia3=ia2*ia2, mu=1, xvt dim1=ia2, xvt dim2=ia2;
double *xvt;
int x offset = 1 + xvt dim1 * (1 + xvt dim2);

x −= x offset;
xvt=&x[(mu * xvt dim2 + 1) * xvt dim1 + 1];
doitgen ref (a, &ia1, &ia2, &ia3, xvt, &ldx, &np, &nq, &nr, &ns);

30

return 0;
} /* doitgen ref wrap */

8



5 Conclusion

We have demonstrated that the Generic Code Optimization system is effective at optimizing
the doitgen computational kernel code. With less effort than it would take to tune by hand,
we achieved better performance than both the hand-tuned version and the version generated
by a general-purpose optimizing compiler. Also the resulting C code is readable enough that
further optimizations not provided by the LoopProcessor could be performed by hand.

References

[1] Gordon E. Moore. Cramming More Components onto Integrated Circuits. Electronics,
38(8):114–117, 19 April 1965.

[2] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures. Mor-
gan Kaufmann Publishers, 2002.

[3] David A. Padua and Michael Wolfe. Advanced Compiler Optimizations for Supercom-
puters. Commun. ACM, 29(12):1184–1201, 1986.

[4] Qing Yi, Ken Kennedy, Haihang You, Keith Seymour, and Jack Dongarra. Automatic
Blocking of QR and LU Factorizations for Locality. In 2nd ACM SIGPLAN Workshop
on Memory System Performance (MSP 2004), 2004.

[5] Robert Schreiber and Jack Dongarra. Automatic Blocking of Nested Loops. Technical
Report CS-90-108, Knoxville, TN 37996, USA, 1990.

[6] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving Data Locality
with Loop Transformations. ACM Trans. Program. Lang. Syst., 18(4):424–453, 1996.

[7] Utpal Banerjee. A Theory of Loop Permutations. In Selected Papers of the Second
Workshop on Languages and Compilers for Parallel Computing, pages 54–74. Pitman
Publishing, 1990.

[8] R. Clinton Whaley, Antoine Petitet, and Jack Dongarra. Automated Empirical Op-
timizations of Software and the ATLAS Project. Parallel Computing, 27(1-2):3–35,
January 2001.

[9] Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Rich
Vuduc, Clint Whaley, and Katherine Yelick. Self adapting linear algebra algorithms and
software. Proceedings of the IEEE, 93(2), 2005. special issue on ”Program Generation,
Optimization, and Adaptation”.

[10] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and James Demmel. Optimizing Matrix
Multiply Using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodology.
In International Conference on Supercomputing, pages 340–347, 1997.

[11] Richard Vuduc, James Demmel, and Katherine Yelick. OSKI: A library of automati-
cally tuend sparse matrix kernels. In Proc. SciDAC 2005, Journal of Physics: Confer-
ence Series, volume 16, San Francisco, CA, June 2005.

9



[12] Matteo Frigo and Steven G. Johnson. FFTW: An Adaptive Software Architecture
for the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing,
volume 3, pages 1381–1384. IEEE, 1998.

[13] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria
Garzaran, David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A Comparison
of Empirical and Model-driven Optimization. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation,
pages 63–76. ACM Press, 2003.

[14] Qing Yi and Dan Quinlan. Applying loop optimizations to object-oriented abstractions
through general classification of array semantics. In The 17th International Workshop
on Languages and Compilers for Parallel Computing, West Lafayette, Indiana, USA,
Sep 2004.

[15] Dan Quinlan, Markus Schordan, Qing Yi, and Andreas Saebjornsen. Classification and
untilization of abstractions for optimization. In The First International Symposium on
Leveraging Applications of Formal Methods, Paphos, Cyprus, Oct 2004.

[16] Haihang You, Keith Seymour, and Jack Dongarra. An effective empirical search method
for automatic software tuning. Technical Report ICL-UT-05-02, Computer Science
Department, University of Tennessee, May 2005.

[17] Qing Yi, Keith Seymour, Haihang You, Richard Vuduc, and Dan Quinlan. POET:
Parameterized Optimizations for Empirical Tuning. Technical Report CS-TR-2006-
006, Computer Science Department, University of Texas at San Antonio, 2006.

[18] R.J. Harrison, I. Fann G, T. Yanai, and G. Beylkin. Multiresolution quantum chemistry
in multiwavelet bases. In Proc. International Conference on Computational Science
(ICCS 2003), volume 2657-2660, pages 103–110, Melbourne, Australia, 2003. Springer-
Verlag Lecture Notes in Computer Science.

10


